
Crowdsourcing upstream Refactoring

Tom Marble, Bdale Garbee

January 29, 2013

Contents

1 Crowdsourcing upstream Refactoring 2
1.1 Overview: Topics to cover . 2

2 Background 2
2.1 About Tom . 2

2.1.1 Sun: OpenJDK . 3
2.1.2 Consulting . 4

2.2 About Bdale . 4
2.2.1 One of the longest contuinally serving Debian Developers 5
2.2.2 AltusMetrum . 6

3 Upstreams and distros have di�erent goals 6
3.1 upstreams want . 6
3.2 distros want . 6
3.3 and ideally . 7

4 What does this problem look like? 7
4.1 Because upstreams . 7
4.2 . . .make more work for distros 7

5 A �real world� example: OpenRocket 8
5.1 upstream provides an uberjar 8
5.2 . . . but we can't use it . 9

6 What can we do? 10
6.1 Provide upstream guides . 10
6.2 Share metadata: CUDF . 10

6.2.1 Mancoosi . 10

1

6.2.2 CUDF example . 10
6.2.3 CUDF adoption . 11

6.3 Use continuous integration . 11

7 Conclusion 12

8 Q/A 13

9 Background material 13
9.1 More on Mancoosi and CUDF 13
9.2 What is that presentation tool? 13

1 Crowdsourcing upstream Refactoring

�le:cover.txt

1.1 Overview: Topics to cover

...overview. . .

2 Background

2.1 About Tom

tmarble

2

file:///home/tmarble/src/lca/crowdsourcing-refactoring/cover.txt

2.1.1 Sun: OpenJDK

Part of the Java open source Core Strategy Team at Sun, �rst OpenJDK
Ambassador (I went to a lot of conferences)

� FOSDEM

� FISL

� OSCON

ApacheCon 2006: Sun unBOF/Party

3

/Copyright 2006 Ted Leung: https://secure.�ickr.com/photos/twleung/268116213/

2.1.2 Consulting

Cybersecurity
Performance Analysis and Benchmarking
Clojure
Very interested in open, embedded systems

2.2 About Bdale

bdale

4

https://secure.flickr.com/photos/twleung/268116213/

2.2.1 One of the longest contuinally serving Debian Developers

DebConf 11

http://wiki.debconf.org/wiki/DebConf11/Pictures/GroupPhoto

5

http://wiki.debconf.org/wiki/DebConf11/Pictures/GroupPhoto

2.2.2 AltusMetrum

Open Hardware - Open Software - Ham Radio - Rocket Science

3 Upstreams and distros have di�erent goals

There are big di�erences between what

3.1 upstreams want

Simple user experience to download and run
Simple development experience
More features! :-P

3.2 distros want

A system built from consistently packaged, interoperable software elements
Complete modularity for

� maintainability

� reusability (archive size)

� security (�x problems once)

� license clarity

Clearly de�ned build dependencies
Repeatable, o�-line, fully automated build procedures �le:debian.svg

6

file:///home/tmarble/src/lca/crowdsourcing-refactoring/debian.svg

3.3 and ideally

We want both upstreams and distros to be satis�ed
We want to increase the productivity of everyone so we can make more

Free Software
�le:Tux.svg

4 What does this problem look like?

Today each distro needs to do refactoring work in order to adhere to their
own guidlines.

� As a community we are duplicating a lot of tricky e�ort

� We are doing a poor job of sharing knowledge about packaging

� We don't have a consistent plan for collaborating with upstreams

4.1 Because upstreams

Upstreams want to

� only have to worry about one �user� distribution

� simplify the build process by checking in binary artifacts

But these artifacts do not have corresponding source

� This could be for convenience � there is an upstream FLOSS project,
but building it from source is tedious

� This could be a binary BLOB

� Licenses do not accompany these artifacts

� Build tools may use maven (downloads binary artifacts at run time)
or worse � a custom built build tool.

4.2 . . .make more work for distros

Distros

1. only want one copy of each software project (library) in our archive

2. must have corresponding source

7

file:///home/tmarble/src/lca/crowdsourcing-refactoring/Tux.svg

3. must have license clarity: is redistribution allowed?

4. must build repeatably (esp. in a clean room, o�ine environment)

5. must �discover� and refactor each dependency. . . �nd the source, �nd
the license, and package it

6. if ! done then goto 1 :)

5 A �real world� example: OpenRocket

Some of the biggest challenges are Java upstreams.
One such upstream is OpenRocket (could not be nicer people!)

5.1 upstream provides an uberjar

In packaging for Debian we �nd. . . an uberjar

8

5.2 . . . but we can't use it

We need fully refactored interdependent packages (each with source):

9

6 What can we do?

Let's collaborate on educating upstreams!

6.1 Provide upstream guides

Let's draft/extend distribution agnostic refactoring best practices that o�er
an incentive:

�How to accelerate the adoption of your project!�
Debian: https://wiki.debian.org/UpstreamGuide includes pointers to: A

blog series by François Marier https://wiki.debian.org/AdvantagesForUpstream
Fedora (Tom �spot� Calloway): http://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL
does your distro have an upstream guide?

6.2 Share metadata: CUDF

Repository is a set of Packages (installed or available)
Each package has a name and a version (there are many di�erent ver-

sioning schemes :()
Users want to request installing, upgrading, removing packages (etc.)
Users have preferences (trendy, cautious, etc.)
This is the �Upgrade Problem� and each distro handles it di�erently

6.2.1 Mancoosi

�Managing the Complexity of Open Source Software�
Research collaboration incluing the Université Paris Diderot, INRIA and

others into the Upgrade Problem has proposed separating �dependency solv-
ing� from the the �UI� of package managers.

The result has been a pluggable dependency solver competition which
has signi�cantly outperformed ad hoc, hard coded solvers. The winning
solver a much better score of maintaining constraints and in signi�cantly
less time (100:1).

The API for plugging in dependency solvers is based on CUDF: the
Common Upgrade Description Format

6.2.2 CUDF example

preamble: property: bugs: int = 0, suite: enum (stable, unstable) = �
stable �,

10

https://wiki.debian.org/UpstreamGuide
https://wiki.debian.org/AdvantagesForUpstream
http://www.theopensourceway.org/wiki/How_to_tell_if_a_FLOSS_project_is_doomed_to_FAIL

package: car version: 1 depends: engine, wheel > 2, door, battery <=
13 installed: true bugs: 183

package: bicycle version: 7 suite: unstable
package: gasoline-engine version: 1 depends: turbo provides: engine

con�icts: engine, gasoline-engine installed: true . . .
request: install: bicycle, gasoline-engine = 1 upgrade: door, wheel > 3

6.2.3 CUDF adoption

Uses of CUDF

� The Eclipse IDE plugin manager

� The OCaml native package manager (OPAM)

� OpenSUSE libzypp

� Debian apt-cudf allows pluging in alternative dependency solvers to
APT (including user preferences)

What can we ask upstreams to care about?
What metadata should they include?

6.3 Use continuous integration

Let's encourage upstreams to setup and share Jenkins!
Keep upsteam breakage to a minimum (or at least notify right away)

11

7 Conclusion

The problem is

� upstreams and distros have di�erent goals

� yet we want everyone to be satis�ed and productive

What can we do?

� Provide upstream guides and education

� Share metadata: CUDF

� Use continuous integration

Special Thanks to Stefano Zacchiroli for providing many great ideas and
pointers.

We will share �slides� on Tom's microblogs: @tmarble
This presentation: Copyright @ 2013 Tom Marble, Bdale Garbee under a

Creative Commons Share Alike USA 3.0 license https://creativecommons.org/licenses/by-
sa/3.0/us/

12

https://creativecommons.org/licenses/by-sa/3.0/us/
https://creativecommons.org/licenses/by-sa/3.0/us/

8 Q/A

Questions?
Thoughts?
Discussion

9 Background material

9.1 More on Mancoosi and CUDF

Mancoosi http://www.mancoosi.org/
Publications by Stefano Zacchiroli http://upsilon.cc/�zack/research/publications/

9.2 What is that presentation tool?

Emacs!
This is org-tree-slide from https://github.com/takaxp/org-tree-slide
For more on org mode see http://orgmode.org/org.html
Yes I will share my �slides� on my website http://tmarble.info9.net

13

http://www.mancoosi.org/
http://upsilon.cc/~zack/research/publications/
https://github.com/takaxp/org-tree-slide
http://orgmode.org/org.html
http://tmarble.info9.net

14

	Crowdsourcing upstream Refactoring
	Overview: Topics to cover

	Background
	About Tom
	Sun: OpenJDK
	Consulting

	About Bdale
	One of the longest contuinally serving Debian Developers
	AltusMetrum

	Upstreams and distros have different goals
	upstreams want
	distros want
	and ideally

	What does this problem look like?
	Because upstreams
	…make more work for distros

	A ``real world'' example: OpenRocket
	upstream provides an uberjar
	…but we can't use it

	What can we do?
	Provide upstream guides
	Share metadata: CUDF
	Mancoosi
	CUDF example
	CUDF adoption

	Use continuous integration

	Conclusion
	Q/A
	Background material
	More on Mancoosi and CUDF
	What is that presentation tool?

