Clojure: Designed for Performance

Tom Marble

January 30, 2013

Contents
[L Clojure: Designed for Performance 3
(1.1 Overview: Topics to cover| 3
|2 Background| 3
1 AboutToml 3
2.1.1 Sun: Java Performance Teaml| 4
2.1.2 Sun: OpenJDK| o0)
[2.1.3 Consulting] 6
3 Why Common Lisp?| 6
[3.1 Avantages of Common Lasp| 7
(3.1.1 homoiconicl 7
[3.1.2 macros: code transtormations at compile time| 7
[3.1.3 Great for Domain Specific Languages|. 8
BIZ_REPT]« oo 8
[3.1.50 Lispsuccesses|., 8
[3.2 Disadvantages of Common Lisp| 9
[3.2.1 There is a standard, but no compatibility test kit (as
| for Java)l. 9
[3.2.2 Having a standard i1s no guarentee of compatibility| . . 10
[3.2.3 The “library” problem| 10
[3.2.4 'T'he porting problem|, 10
[3.2.5 The concurrency problem| 11
4 Why Java?| 11
[4.1 Avantagesof Javal. oL, 11
11 CrossPlaforml. 11
412 Rich set of ibrared 11

[4.1.3 Enterprise adoption|
[4.1.4 Pertormance: Dynamic code optimization|
[4.1.5 Performance: Garbage Collection|

2

Disadvantages ot Java] L.

4.2.1 Mutation is (almost) required|
[4.2.2 Single inheritence hierarchy|
[4.2.3 Complex|. o

[4.2.7 Java EE APIs in the Application Client Container| . .

[F"Why Clojure?)
[>.1 Advantages of Clojure|
[>.1.1 Easy interoperation with Javal.
[>.1.2 Leverages advantages ot a Lisp|
B.1.3 Multimethodso 0oL
[b.1.4 Lazy sequences|,
[5.1.5 Functional Programming|.
[>.1.6 Software Transactional Memory|{.
[.1.7 No spec, one implementation|
[>.2 Disadvantages of Clojurel.
[5.2.1 The state of Clojure Contrib (is a challenge)|.
6 Concurrent Programming]|
GBI Threads o oot
[6.2 Threading harness (for examples)|
[6.3 Types of operations|.
6.4 Refd
B5 _ATOMS - . .« o o o e
0.0 Agents|. oL
[7 Promising Future)

[7.1.1 ARM looks very good for size, cost, heat|.
[7.1.2 We are seeing ARM everywhere in embedded devices| .
[7.1.3 Java as assembly language|.

72

Bleeding Edge OpenJDK features|.

[7.2.1 Fork/Join|
[7.2.2 Tail Call Optimization|

13
13
13
14
14
14
14
15
15
16
16

16
16
17
17
17
17
18

19

[7.2.3 Invoke Dynamic|,
[7.2.4 Modularization (Jigsaw)|

8 Conclusion|

10 Extral
(10.1 What is that presentation tool?|
(10.1.1 Note’s on what I put in my .emacs.d/custom.ell

1 Clojure: Designed for Performance
file:Clojure-glyph.svg

1.1 Overview: Topics to cover

...overview. . .

2 Background

2.1 About Tom

tmarble

file:///home/tmarble/src/lca/clojure-performance/Clojure-glyph.svg

4

2.1.1 Sun: Java Performance Team

Continuous Performance Integration for the JVM

@ Standard Performance Evaluation Corporation

benchmarks results contact sitemap sitesearch help

T e SPECjvm2008

Flag Descriptions
Results Search

2 Fair Use Policy SPECjvm2008 (Java Virtual Machine Benchmark) is a benchmark site for measuring the performance of a Java Runtime
- Environment (JRE), containing several real life applications and benchmarks focusing on core java functionalty. The suite
focuses on the performance of the JRE executing a single application; it reflects the performance of the hardware processor and
@ JvM2008 memory subsystem, but has low dependence on file I/O and includes no network I/O across machines. The SPECmM2008
L) a‘:f:';:"‘ﬂ“"" workload mimics a variety of common general purpose application computations. These characteristics reflect the intent that
Run . Reporting Rues this benchmark will be applicable to measuring basic Java performance on a wide variety of both client and server systems.

o
T sumpert SPEC also finds user experlence of Java important, and the site therefore includes startup benchmarks and has a required run

category called base, which must be run withoit any tuning of the JVM to improve the ot of the box performance.
Press and

[Publications . ry s
SPECjvin2008 Benchmark Highlights

3 Press Release
— « Leverages real life applications (like derby, sunflow, and javac) and area-focused benchmarks (like xml, seriaiization, crypto, and
scmard

) « Also measures the performance of the operating system and hardware in the context of executing the JRE
 Download SPECjvm2008
Purchase a D

Results
Resources
B ste Map Submitted Resuits - Text and HTML outputs for the SPECM2008 metrics; includes all of the resuits subrmitted to SPEC from
2 site Search licensees of the benchmark.
site Index
Glossary Flag Descriptions - Further documentation about tunings used for a published result which are not included in the resuit's notes
Performance Links section may be found here

Documentation

The software documentation is available both here and in the SPECjvm2008 download package

2.1.2 Sun: OpenJDK

Part of the Java open source Core Strategy Team at Sun, first OpenJDK
Ambassador (I went to a lot of conferences)

e FOSDEM
o FISL
e OSCON

ApacheCon 2006: Sun unBOF /Party

/Copyright 2006 Ted Leung: https://secure.flickr.com/photos/twleung /268116213 /

2.1.3 Consulting

Cybersecurity
Performance Analysis and Benchmarking
Clojure
Very interested in open, embedded systems

3 Why Common Lisp?

John McCarthy was old school: developed LISP in 1954

https://secure.flickr.com/photos/twleung/268116213/

3.1 Avantages of Common Lisp
3.1.1 homoiconic

code is data

List

(def mylist (list 1 2 3))

Function

(def myadd (fn [a b] (+ a b)))

A lisp is defined in terms of the evaluation of data structures and not in
terms of the syntax of files.

3.1.2 macros: code transformations at compile time

Macros offer hooks for syntactic abstraction and there is very little syntax.

(defmacro and ([] true) ([x] x) ([x & rest] ‘(let [and# ~x] (if and# (and
“@rest) and#))))

Allows code transformation before the reader does evaluation. In Clo-
jure defn is a macro that makes defining functions a little simpler.

Code walkers are easy to write.

3.1.3 Great for Domain Specific Languages

LISP is the language of choice when writing Domain Specific Languages
(DSL’s).
Example from ILC ‘09 at MIT

e Alex Fukunaga (Tokyo University) spoke on The Satisfyability Problem
e A DSL for SAT algorithms

e Used a biological evolution inspired algorithm

3.1.4 REPL

The Read Eval Print Loop
Interactive code development
Instead of just dump a stack trace and die on an error... you can edit
data and functions (they look the same) and continue your program!
nREPL and emacs

3.1.5 Lisp successes

Artificial Intelligence

Travel Planning

Google’s $700 M acquisition of ITA

Scientific Computing Lisp

SciCL augments Common Lisp with an extensive library of aggregate-
wise (“AG-wise”) operations on arrays, providing the essential functionality
of languages such as APL, Fortran 90, IDL and Matlab.

http://www.siginf.com /

http://www.siginf.com/

3.2 Disadvantages of Common Lisp

3.2.1 There is a standard, but no compatibility test kit (as for

Java)
&
\3(\
P 28°
e
efie)
f“gg*\(bq 5 ©
5”563’51}60’_*%?’51:%6 $"*’§§° ’ﬁaezco{
P e A ot
AN S B P W DB IS &, O O, O A
o o\'% c\’% 0\'% c}’% 0\5:‘) Attt et
Y Y oY Y oY oY oY & ©T U T
quicklisp 2012-05-20| E E E 0 0L
quicklisp 2012-04-07 E 0 [0 Joo 0 0
quicklisp 2012-03-07 FF|E E E 000 Jot
alexandria quicklisp 2012-02-08 E |E I3 o [0 |o
quicklisp 2012-01-07 E_|E E 0 0
quicklisp 2011-12-03|f |F |F E 0 g Jo
quicklisp 2011-11-05
quicklisp 2012-05-20| E 0 E 0 EE
quicklisp 2012-04-07 0 0 [E |EE 0 E
quicklisp 2012-03-07 EE |0 E 0 00|F |EF
anaphora quicklisp 2012-02-08 | E 0o |[F |E
quicklisp 2012-01-07 E |0 E 0 E
quicklisp 2011-12-03[c [|o F E |0 |E
quicklisp 2011-11-05
quicklisp 2012-05-20| E F F E 3
arnesi quicklisp 2012-04-07 E E |E |EE E E
quicklisp 2012-03-07 E E E E
quicklisp 2011-11-05
nialdion 017 AR AN - - - - o

3.2.2 Having a standard is no guarentee of compatibility

3.2.3 The “library” problem

There isn’t a consistent disclipline within the LISP community about how
best to package and distribute libraries.

There is ASDF which is a low-level approach and QuickLisp (which uses
ASDF) to create a CPAN-like high-level approach. But not all the libraries
are Quicklisp enabled (nor work on all Lisp implementations).

Writing Lisp code means making a committment to a set of implemen-
tations and a packaging approach — and porting missing bits.

3.2.4 The porting problem

The current Lisp implementions often use some assembly langauge at a low
level... which limits their portability. For example here is the picture for
SBCL:

10

In addition to the official SBCL, a Windows
fork exists that improves support for the
Windows platform, especially in the area of
threads, 1/O, and x86-64 support. Though
is has not yet been incorporated into
mainline, Windows users may want to
consider using it in the meanwhile.

Linux

Darwin (Mac 0S X)

Solaris

Key

FreeBSD Available and supported

NetBSD Port in progress

Not available (porters welcome!)

OpenBSD
No such system
‘Windows
Processors
X86 ¥86 (32-hit Intel and compatible)
AMDG64 | 64-bit X86 (AMD64, EM64T, Via Nano)
PPC PowerPC

SPARC | SPARC and UltraSPARC
‘Alpha DEC Alpha

MIPSbe, MIPS (big endian mode)
MIPSle | MIPS (little endian mode)

3.2.5 The concurrency problem

The tools for managing threads and concurrent operations are not part of
the ANSI Specification and thus left as an “exercise for the reader” :(

4 Why Java?

4.1 Avantages of Java
4.1.1 Cross Plaform

WORA = Write Once Run Anyware even with s/Run/Debug/ it is still
better

The assembly language coding has been done for you (on many OS ARCH
combinations)

Zero assembler JIT

4.1.2 Rich set of libraries

Many many libraries are available for Java

4.1.3 Enterprise adoption
Very popular

11

4.1.4 Performance: Dynamic code optimization

HotSpot Virtual Machine
e on the fly profiling,
e inlining, loop unrolling
e de-opt/reopt
e escape analysis

e dead code elimination

4.1.5 Performance: Garbage Collection

Several proven GC algorithms
e throughput

e pause time

4.2 Disadvantages of Java
4.2.1 Mutation is (almost) required

Graph of mutable, stateful objects are a nightmare to manage with concur-
rency
Unconcious mutation is a source of bugs

e passing mutable objects to functions

e using mutable objects as keys

Coping mechanisms

e copy constructurs “freeze state” in a snapshot
e deep copy

e collections offer a weak facade

12

4.2.2 Single inheritence hierarchy

Object Oriented Programming is used for everything even when it doesn’t
make sense

e java.lang.Math has to gather up a bunch of static functions
e This leads to the “Kingdom of Nouns”

Interfaces are a soft attempt at multiple inheritance
Aspect oriented programming is an attempt to avoid code duplication in
the face of strong typing.

4.2.3 Complex

Java Fetishizes Complexity

4.2.4 Java EE Containers

file:overview-architecture-cont.gif

4.2.5 Java EE APIs in the Web Container

file:overview-architecture-web.gif

4.2.6 Java EE APIs in the EJB Container

file:overview-architecture-ejb.gif

4.2.7 Java EE APIs in the Application Client Container

file:overview-architecture-acc.gif

5 Why Clojure?
5.1 Advantages of Clojure

5.1.1 Easy interoperation with Java

(.toUpperCase “hello”)
Embraces the power of the JVM

e also runs on the CLR and on JavaScript

Typing support without the burden of strong typing

13

file:///home/tmarble/src/lca/clojure-performance/overview-architecture-cont.gif
file:///home/tmarble/src/lca/clojure-performance/overview-architecture-web.gif
file:///home/tmarble/src/lca/clojure-performance/overview-architecture-ejb.gif
file:///home/tmarble/src/lca/clojure-performance/overview-architecture-acc.gif

e Common Lisp typing is a hint to the compiler!

(defn #Propertiesas—properties“Convertanyseqo fpairstoajava.utils. Propertiesinstance.U sesas
strtoconvertbothkeysandvaluesintostrings.”{: tagProperties}[m](let[p(Properties.)|(doseq[[kv]m](.s
strk)(as — strv)))p))

5.1.2 Leverages advantages of a Lisp

Clojure models its data structures as immutable objects represented by in-
terfaces

Many functions defined on few primary data structures (seq, map, vector,
set).

Clojure multimethods decouple polymorphism from OO and types

e Supports multiple taxonomies

e Dispatches via static, dynamic or external properties, metadata, etc

5.1.3 Multimethods

Multimethod Examples. ..
file:multi-1.clj
file:multi-2.clj

5.1.4 Lazy sequences

All Clojure collection types are sequences (as are Java collections and Arrays)
A lazy sequence will only compute contents when they are consumed.

e Performance pro-tip: avoid doing work (until it’s actually necessary)

file:lazy-seq-1.clj
file:lazy-seq-2.clj

5.1.5 Functional Programming

Immutable data + first-class functions, supporting recursion

Dynamic polymorphism

Emphasizes recursive iteration instead of side-effect based looping

user> (let [my-vector [1 2 3 4] my-map {:fred “ethel”} my-list (list 4 3
2 1)] (list (conj my-vector 5) (assoc my-map :ricky “lucy”) (conj my-list 5)
my-vector my-map my-list)) -> (|1 2 3 4 5] {:ricky “lucy”, :fred “ethel”} (5 4
321) (123 4] {:fred “ethel’} (4321))

14

file:///home/tmarble/src/lca/clojure-performance/multi-1.clj
file:///home/tmarble/src/lca/clojure-performance/multi-2.clj
file:///home/tmarble/src/lca/clojure-performance/lazy-seq-1.clj
file:///home/tmarble/src/lca/clojure-performance/lazy-seq-2.clj

5.1.6 Software Transactional Memory

Core data structures are immutable and can easily be shared between threads
Mutation is possible using locks to avoid conflicts

e dosync, ref, set, alter, et al, supports sharing changing state between
threads in a synchronous and coordinated manner.

e The agent system supports sharing changing state between threads in
an asynchronous and independent manner.

e The atoms system supports sharing changing state between threads in
a synchronous and independent manner.

e The dynamic var system supports isolating changing state within
threads.
5.1.7 No spec, one implementation

Disadvantages: All eggs in one basket
Advantages: Clojure works everywhere Innovation happens quickly
Core data structures are extensible abstractions Vibrant community

15

5.2 Disadvantages of Clojure
5.2.1 The state of Clojure Contrib (is a challenge)

“Modularization of Contrib”
http://dev.clojure.org/display /doc/Clojure+Contrib

The idea is that everything that hasn’t been modularized yet is suppos-
edly either low quality or in low demand
This is improving. . .

6 Concurrent Programming

6.1 Threads

(def long-calculation (future (apply + (range 1e8)))) @long-calculation
(def bg (future (Thread/sleep 5000) (println “done”))) @bg

16

http://dev.clojure.org/display/doc/Clojure+Contrib

6.2 Threading harness (for examples)

file:futures.clj

6.3 Types of operations

Coordinated: multiple actors must cooperate to produce correct results
Synchronous: caller blocks evaluation

Operations Coordinated Uncoordinated
Synchronous Refs Atoms
Asynchronous Agents

NOTE: as the focus of Clojure is in-process concurrency the Coordinated
- Asynchronous case is not implemented directly in the language (e.g. more
for databases)

6.4 Refs

Coordinated + Synchronous
STM has ACID properties (except D):

e Atomic

e Consistent
e [solated

e (Durability)

(dosync ;; the body is a transaction (alter myref f argl arg2)) ;; mutation
of a reference
file:refs.clj

6.5 Atoms

Uncoordinated + Synchronous

Safe mutation within a thread: compare and set

;; The function f will be re-tried of the value ;; of myatom changed during
the call (swap! myatom f)

file:atoms.clj

17

file:///home/tmarble/src/lca/clojure-performance/futures.clj
file:///home/tmarble/src/lca/clojure-performance/refs.clj
file:///home/tmarble/src/lca/clojure-performance/atoms.clj

6.6 Agents

Uncoordinated + Asynchronous
file:agents.clj

7 Promising Future

7.1 Java

Moore’s law in combination with new architectures makes Java very attrac-
tive from mobile to super computers.

Sun originally wanted Java to enable customers to use SPARC

Today many Enterprises run on Intel architectures

But what about tomorrow?

7.1.1 ARM looks very good for size, cost, heat

Maybe we will see ARM in the data center? Red Hat is now porting Open-
JDK to arm64!!!

18

file:///home/tmarble/src/lca/clojure-performance/agents.clj

News

& PRIMT
£ SHARE oM 50 87

. S COMMENTS (1
Dell Kicks Off ARM Server Ecosystem Development
Program.
Dell Teams Up with Texas Advanced Computing Center on ARM Servers

[05/29/2012 10:01 PM]
by Anton Shilov

Dell said on Tuesday that it had begun to woark on ecosystem for ARM-hased servers. Dell believes
that ARM-based server market is approaching an inflection point, marked by increasing customer
interestin testing and developing applications, and Dell thinks now is the right time to help foster
development and testing of operating systems and applications for ARM servers.

Dell began testing ARM servertechnology
internally in 2010 in response to increasing
customer demands for density and power
efficiency, and worked closely with select Dell
data center solutions (DCS) hyperscale
customers to understand their interest lavel and
expectations for ARM-based servers. As part of
this effart, Dell has delivered Dell "Copper" ARM
serverto select customers and partners,
including key ecosystem partners such as
Canonical and Cloudera, to support their =

development activities. In addition, Dell started to provide remote access to ARM-based machines to
interested developers.

7.1.2 We are seeing ARM everywhere in embedded devices

Raspberry Pi

7.1.3 Java as assembly language

For these reasons Clojure is one of many vibrant, alternative languages on
the JVM which include:

e JRuby

e Scala

Jython
IKVM.NET

e Gosu

19

e Smalltalk

e JavaScript

7.2 Bleeding Edge OpenJDK features
NOT yet truly being used by Clojure

7.2.1 Fork/Join

Bring Doug Lea’s Fork/Join framework into Clojure
Primary example pmap

e using the shortest map/reduce tutorial ever

user> (def mylist ‘(1 2 3 4 5 6)) #’user/mylist user> (map even?
mylist) (false true false true false true) user> (reduce ‘or (map even?
mylist)) true

David Liebke: “From Concurrency to Parallelism” http://incanter.org/downloads/fjclj.pdf

7.2.2 Tail Call Optimization

Save space on the stack:

call factorial (3) call fact (3 1) call fact (2 3) call fact (1 6) call fact (0
6) return 6 return 6 return 6 return 6 return 6

call factorial (3) call fact (3 1) replace arguments with (2 3), jump to
“fact” replace arguments with (1 6), jump to “fact” replace arguments with
(0 6), jump to “fact” return 6 return 6

NOTE: Clojure does have recur and trampoline but the JVM itself
lacks a generic optimization for TCO (but there is an older patch in the
MVLM repo).

https://en.wikipedia.org/wiki/Tail call

7.2.3 Invoke Dynamic

JSR 292

Enables the HotSpot VM to see into your “JVM Language” code and
optimize it!

Why Clojure Doesn’t Need Invokedynamic (Unless You Want It to
be More Awesome) http://blog.headius.com/2011/10/why-clojure-doesnt-
need-invokedynamic.html

20

http://incanter.org/downloads/fjclj.pdf
https://en.wikipedia.org/wiki/Tail_call
http://blog.headius.com/2011/10/why-clojure-doesnt-need-invokedynamic.html
http://blog.headius.com/2011/10/why-clojure-doesnt-need-invokedynamic.html

7.2.4 Modularization (Jigsaw)

Better startup time Finer grained dependencies Smaller footprint (embed-
ded)
@ Sun
websvc compat corba kerberos
cli-tools

jdbc 1

security-misc

/

sasl management

xm|d5|g
/ \gm -tools
xml- Iransform client v
x- annotatlon jndi
\4 xml- parse /
crypto

scnpnng charsets \ /
resources rm| /

base ssl

instrument

jx-fransaction

8 Conclusion

LISP is incredibly powerful (don’t be afraid of the parens)

Clojure is the best LISP now (because of the JVM)

Java means future proof for platforms in the cloud and the “Internet of
Things”.

There are still many optimizations waiting to be made

The #1 reason to use Clojure: productivity.

This presentation: Copyright @ 2013 Tom Marble under a Creative Com-
mons Share Alike USA 3.0 license https://creativecommons.org/licenses/by-
sa/3.0/us/

Will post a pointer to slides on {twitter,identi.ca} @tmarble

9 Q/A

Questions?

21

https://creativecommons.org/licenses/by-sa/3.0/us/
https://creativecommons.org/licenses/by-sa/3.0/us/

10 Extra

10.1 What is that presentation tool?

Emacs!
This is org-tree-slide from https://github.com/takaxp/org-tree-slide
For more on org mode see http://orgmode.org/org.html
Yes I will share my “slides” on my website http://tmarble.info9.net

22

https://github.com/takaxp/org-tree-slide
http://orgmode.org/org.html
http://tmarble.info9.net

A GNU MANUAL

The Org Mode 7
Reference Manual

Organize your life with GNU Emacs

Carsten Dominik and others

PUBLISHED BY NETWORK THEORY LTD

10.1.1 Note’s on what I put in my .emacs.d/custom.el

(require ‘org-tree-slide)

(global-set-key (kbd “<fl1>") ‘show-all) (global-set-key (kbd “<f5>")
‘text-scale-decrease) (global-set-key (kbd “<f6>") ‘text-scale-increase) (global-
set-key (kbd “<f8>7) ‘org-tree-slide-mode) (global-set-key (kbd “<f9>") ‘org-
tree-slide-content) (global-set-key (kbd “<f10>") ‘hide-sublevels)

Printing to PDF: C-c¢ C-e p (org-export-as-pdf)

10.2 The Tools I am using
10.2.1 Maven

Finding dependencies: mvn dependency:tree -DoutputFile=dependency.txt

my-website:my-website:jar:0.1.0-SNAPSHOT +- org.clojure:clojure:jar:1.3.0:compile
noir:noir:jar:1.2.2-SNAPSHOT:compile +- compojure:compojure:jar:1.0.0-
RC2:compile

+- org.clojure:core.incubator:jar:0.1.0:compile

+- org.clojure:tools.macro:jar:0.1.0:compile

+- clout:clout:jar:1.0.0:compile
ring:ring-core:jar:1.0.1:compile

-+- commons-io:commons-io:jar:1.4:compile

+- commons-fileupload:commons-fileupload:jar:1.2.1:compile
javax.servlet:servlet-api:jar:2.5:compile

+- org.clojure:tools.namespace:jar:0.1.0:compile
org.clojure:java.classpath:jar:0.1.0:compile
+- clj-json:clj-json:jar:0.4.3:compile
org.codehaus.jackson:jackson-core-asl:jar:1.5.0:compile
+- ring:ring:jar:1.0.1:compile
+- ring:ring-devel:jar:1.0.1:compile
ns-tracker:ns-tracker:jar:0.1.1:compile

+- ring:ring-jetty-adapter:jar:1.0.1:compile
+- org.mortbay.jetty:jetty:jar:6.1.25:compile

org.mortbay.jetty:jetty-util:jar:6.1.25:compile
ring:ring-servlet:jar:1.0.1:compile

24

OTg.MO!

+- hiccup:hiccup:jar:0.3.7:compile +- clj-stacktrace:clj-stacktrace:jar:0.2.3:compile
+- ring-reload-modified:ring-reload-modified:jar:0.1.1:compile +- net.java.dev.jets3t:jets3t:jar:0.8.1:com;

+- commons-codec:commons-codec:jar:1.3:compile

-+- commons-logging:commons-logging:jar:1.1.1:compile

+- commons-httpclient:commons-httpclient:jar:3.1:compile
com.jamesmurty.utils:java-xmlbuilder:jar:0.4:compile

org.mindrot:jberypt:jar:0.3m:compile

10.2.2 Leiningen

Leiningen is awesome https://github.com /technomancy /leiningen
Use with nREPL https://github.com /kingtim /nrepl.el

10.2.3 Jenkins

Continuous Integration Server: http://jenkins-ci.org/
Amarzing Plugins: https://wiki.jenkins-ci.org/display /JENKINS /Plugins
The ones that I use:

e Trac Publisher

e Dependency Graph Viewer

e IM

e Pathignore (essential for big git repo)
e SSH Slaves

e Thin Backup

e Build Result Trigger

Fun ones

e Gravatar

e Emotional Jenkins

25

https://github.com/technomancy/leiningen
https://github.com/kingtim/nrepl.el
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Plugins

10.2.4 Trac
http://trac.edgewall.org/

e Tickets (bugs, tasks), Reports, Browse code, Timeline, Wiki
e Can now use git (yeah!)

e Integration with Jenkins http://trac-hacks.org/wiki/XmlRpcPlugin

26

http://trac.edgewall.org/
http://trac-hacks.org/wiki/XmlRpcPlugin

	Clojure: Designed for Performance
	Overview: Topics to cover

	Background
	About Tom
	Sun: Java Performance Team
	Sun: OpenJDK
	Consulting

	Why Common Lisp?
	Avantages of Common Lisp
	homoiconic
	macros: code transformations at compile time
	Great for Domain Specific Languages
	REPL
	Lisp successes

	Disadvantages of Common Lisp
	There is a standard, but no compatibility test kit (as for Java)
	Having a standard is no guarentee of compatibility
	The ``library'' problem
	The porting problem
	The concurrency problem

	Why Java?
	Avantages of Java
	Cross Plaform
	Rich set of libraries
	Enterprise adoption
	Performance: Dynamic code optimization
	Performance: Garbage Collection

	Disadvantages of Java
	Mutation is (almost) required
	Single inheritence hierarchy
	Complex
	Java EE Containers
	Java EE APIs in the Web Container
	Java EE APIs in the EJB Container
	Java EE APIs in the Application Client Container

	Why Clojure?
	Advantages of Clojure
	Easy interoperation with Java
	Leverages advantages of a Lisp
	Multimethods
	Lazy sequences
	Functional Programming
	Software Transactional Memory
	No spec, one implementation

	Disadvantages of Clojure
	The state of Clojure Contrib (is a challenge)

	Concurrent Programming
	Threads
	Threading harness (for examples)
	Types of operations
	Refs
	Atoms
	Agents

	Promising Future
	Java
	ARM looks very good for size, cost, heat
	We are seeing ARM everywhere in embedded devices
	Java as assembly language

	Bleeding Edge OpenJDK features
	Fork/Join
	Tail Call Optimization
	Invoke Dynamic
	Modularization (Jigsaw)

	Conclusion
	Q/A
	Extra
	What is that presentation tool?
	Note's on what I put in my .emacs.d/custom.el

	The Tools I am using
	Maven
	Leiningen
	Jenkins
	Trac

